
Phonology as coding: an online tool for teaching and developing analyses

 Daniel Kaufman Raphael Finkel Cynthia Gan​
Queens College, CUNY & ELA University of Kentucky Queens College, CUNY​

The Phonomaton, a public web-facing facility, computes phonological derivations based
on a user’s underlying representations and rules. The tool allows a formal
implementation of phonological analyses using familiar methods and lets students
interactively explore the mechanics of feature systems and serial derivations. We
demonstrate a number of the program’s features and end with a discussion of its
implementation in the classroom.1

1. Introduction​

We introduce here the Phonomaton, a public web-facing facility (LINK) designed to assist
students in introductory phonology courses as well as more advanced phonologists in
modeling and comparing complex derivations. The program produces step-by-step derivations
based on user-provided representations and rules that can make full use of features and
autosegmental tiers.2 We then discuss an implementation of this tool in a semester-long trial
and consider the ways in which such tools can facilitate the instruction of theoretical
linguistics more generally.

The Phonomaton aims both to be powerful enough to model the full phonology of any
language and also to serve as a pedagogical tool for introducing fundamental notions of
phonology in an interactive manner that encourages exploration. The tool facilitates teaching
underlying representations, rule notation (including alpha notation, segment indexing and
regular expressions), feature systems, natural classes, serial derivations, morphological levels,
and autosegmental phonology. The Phonomaton allows a user to formulate hypotheses and
immediately test them by manipulating an analysis and seeing its output. We also envision the
tool as a gateway to computer science. It instantiates a high-level programming language
(albeit one that looks nearly identical to familiar rule formalism) and brings to life the
procedural algorithms that have been kept until now in the province of the written page, even
among introductions with a strong focus on formalization (e.g. Bale and Reiss 2018).

2 A companion program in progress, the Optimaton (LINK), which is not discussed here for reasons of space,
produces evaluations of violable constraints in the style of Optimality Theory tableaux with user-provided
underlying representations, candidates and constraints.

1 We thank the Computer Science Department of the ________ for providing computing resources.

1

https://www.kratylos.org/~raphael/claw/phonomaton.cgi
https://www.kratylos.org/~raphael/claw/optimaton.cgi

In the following subsection, we contextualize the program in the current landscape of
linguistic software for professional and pedagogical use. In §2, we give an overview of the core
functions of the software, focusing on how it handles segments and features (§2.1) and
phonological rules (§2.2). This latter section aims to give a feel of what the program is capable
of by examining not only the basic rule formalism (§2.2.1), but also underspecification (§2.2.2),
alpha notation (§2.2.3), morphological boundaries (§2.2.4), segment indexing (§2.2.5),
quantifiers and regular expressions (§2.2.6), types of rule application (§2.2.7) and
morphological paradigms (§2.3). In §3, we discuss how we have employed the program in the
classroom and the results of a student survey on its implementation. We conclude in §4 with a
note on future pedagogical and technological prospects. Readers who are less interested in the
mechanics of the program and more concerned with its pedagogical application should be able
to skip to section §3 without getting lost.

1.1 ​ The state of the field

At present, there are few available computational tools for teaching phonology. Pheatures
Spreadsheet (van Vugt 2012), which supersedes the earlier FeaturePad (Zuraw 2004) and
PhonologyPad (Albro 1999), allows users to explore natural classes within inventories. The
program also shows the result of altering a phonological feature and can check answers to
questions involving natural classes. However, given its narrower focus, Pheatures Spreadsheet
lacks the power to model phonological derivations/evaluations. Phonology Assistant (SIL n.d.)
is even more distant, as it is not aimed at students but rather at linguists seeking to describe a
phonological system. Phonology Assistant works in tandem with other software produced by
SIL (FLEx and Toolbox) to help the user derive as many phonological generalizations as
possible from the lexicon (including stochastic tendencies). However, like the previous
programs, it lacks the ability to model alternations and more resembles a corpus tool. The
program closest to the one presented here is Derive! (Steel and Jurgec 2017), an interactive
browser-based program that calculates serial derivations using SPE-style rules and a
customizable set of features. Despite these similarities, the Phonomaton is, to our knowledge,
the first publicly available program designed to model derivational phonology in its full
breadth, using feature geometry, underspecification, autosegmental representations,
morphological categorization, as well as the ability to download and upload analyses.3

We believe that formalization has broader implications from a field-wide perspective and that
our efforts address two unfortunate trends: increasing incommensurability across analyses
and frameworks and the marginalization of theoretical linguistics in applied fields. With the
proliferation of theories, frameworks and proposals, the field has reached a point where no

3 Software with a similar goal has long been used to good effect in semantics and logic (e.g. Larson et al. 1998,
Barker-Plummer et al. 1999, Champollion et al. 2007, inter alia) as well as morphology (Finkel 2016). However,
nearly all the computational modeling of serial derivations has centered on historical sound change, as
summarized by Piwowarczyk (2022), rather than synchronic phonology.

2

two linguists play by all the same rules, with disagreements both in details and fundamental
concepts. One factor in this trend, we believe, has been the informal nature in which
arguments and analyses are customarily presented. Generative linguistics was long
distinguished by a solid mathematical foundation with a paradoxical antagonism towards
computational implementation, especially puzzling considering the early and widespread
recognition that generative linguistics shares much with the algorithmic style of
programming.4 Halle (1959/1971: 12) already states in his forward to The Sound Pattern of
Russian, "I have assumed that an adequate description of a language can take the form of a set
of rules — analogous perhaps to a program of an electronic computing machine — which when
provided with further special instructions, could in principle produce all and only well-formed
(grammatical) utterances in the language in question." However, by the early 1970s, much of
the substantive formal foundations of Chomsky's earliest work, including the SPE (Sound
Pattern of English, Chomsky & Halle 1968), had largely fallen away, leaving a residue of what
critics often refer to as pseudomath.5 The consequences of this aversion have been both
scientific and sociological. Firstly, practical applications of computational linguistics are now
dominated by statisticians and engineers rather than experts in language structure.
Consequently, the field of theoretical linguistics has boxed itself out of what could have been
its most lucrative applications.6 This is not to say that a field devoted to understanding the
human cognitive system should be driven by economic concerns, but now, in the eighth
decade of generative linguistics, it seems quite likely that the intuition-based (and, arguably,
compuphobic) approach that has defined mainstream linguistics in the US has made pursuing
a profession in the field a gamble that only few can afford. Put more bluntly, a field of study
that should have wide-ranging practical applications throughout society has largely settled for
reproducing linguists.7 Given the persistent socio-economic inequities along racial and ethnic
lines in the US and elsewhere, the field's long-standing inclination towards "pure" theory
could only have negative implications for diversity by narrowing practical applications and
career paths.8 Needless to say, the promotion of diversity and equity faces multiple obstacles

8 Charity Hudley et al. (2020) point out that, as of 2015, “[t]he population of ethnic minorities with advanced
degrees in linguistics is so low in the U.S. that none of the federal agencies report data for these groups” (LSA
2015: 16). But this is not to say that the path from formalization to diversity is either straight or guaranteed. On
the contrary, fields such as mathematics, computer science and physics face similar struggles to diversify without
the additional hurdle described here. It must be noted though that many measures of ethnic/racial diversity in

7 The 2018 NSF Survey of Doctorate Recipients indicates that 78% of Linguistics PhDs are employed by educational
institutions, while 20% are employed by business/industry and 2% by government.

6 This situation was summed up semi-jokingly by Fred Jelinek, a pioneer in Automatic Speech Recognition: “Every
time I fire a linguist, the performance of our speech recognition system goes up.”

5 There is likely a direct link between Chomsky's increasing emphasis at the time on the "Galilean/Cartesian
method" of scientific inquiry and the decreasing attention to "computer realizability" in theoretical linguistics,
but this discussion is clearly beyond our scope here.

4 Kyle Gorman (p.c.) believes that Johnson (1972) solved the question of the SPE's computability, but that the
computational power to implement such a formalism with a full feature system was not widely available until the
1990s. In Gorman's view, computational implementations of phonological theory did not suffer from an
anti-implementation ethos, as suggested here, but rather the advantages of implementation for the average
working linguist were insufficiently compelling.

3

requiring multiple solutions; here, we only seek to nudge linguistics pedagogy towards a
formal rigor with wider application.

Within the pedagogical context, the Phonomaton aims to promote computational
thinking more generally, that is, to develop algorithmic problem-solving techniques that a
computer can carry out (Papert 1990, Wing 2006) and that are generalizable to any number of
professional fields. Computational thinking is often defined as having the following steps:9

●​ Decomposition — reducing complex problems to simpler components
●​ Pattern recognition — identifying similarities within and between problems
●​ Abstraction — using idealized, abstract representations to simplify patterns
●​ Designing algorithms — creating a sequence of instructions to solve a problem
●​ Evaluation — comparing the advantages and disadvantages of alternative solutions

Any linguist will likely recognize that these are precisely the steps taken implicitly or
explicitly in the analysis of natural language. Considering that problem solving in computer
science is so naturally akin to problem solving in linguistics, it appears as even more of a lost
opportunity that formal links between the two fields have until recently been restricted to
computational linguistics proper, and have not permeated significantly into the core
subdisciplines of phonology, morphology, syntax and semantics.10 One of the pedagogical goals
of the Phonomaton is thus to make explicit the very steps laid out above by presenting
phonology as coding.

Although we believe phonology as coding provides transferable skills, we emphasize that the aim
is not to train students to become programmers; it is to use the computer to improve our own
understanding of a phenomenon. In the words of Alan Perlis, "Whereas we think we know
something when we learn it, and are convinced we know it when we can teach it, the fact is that
we don't really know it until we can code it for an automatic computer!" (Forsythe 1958).

In the following, we introduce the main features of the Phonomaton in some detail but refer
the reader to the documentation for a more complete description of all the program's
possibilities. For reasons of space and scope, we do not discuss Autosegmental Phonology nor
the use of the Morphological tier.

10 There is, for instance, nary a mention of computers nor of computer science in Anderson's (2021) Phonology in
the Twentieth Century, although a note appears in the final paragraph of the book regarding recent interest in
statistical and corpus approaches. While the blossoming of such approaches may bode well for the field,
computational methods should be understood to range far beyond stochastic frameworks to include classic
algorithmic thinking.

9 For whatever reason, the fifth element, evaluation, is left out in descriptions of computational thinking more
than it is included. In the field of linguistics, comparison of alternative analyses and evaluation against economic
metrics have long held pride of place, arguably far more so than in computer science.

Linguistics lag behind the average in the sciences (Einaudi et al. 2022).

4

2. ​ Creating a derivation in the Phonomaton

Upon opening the Phonomaton in a web browser, we see the three fields that contain the
principle components of an analysis:

●​ Phonological Rules: Contains a preamble, where the user can declare an inventory,
custom phonemes, custom feature geometries and (inviolable) surface filters, followed
by a series of SPE-style phonological rules, which comprise the derivation proper.

●​ Underlying Representations (UR): A set of abstract phonological forms (provided by
the user in IPA), which will serve as the input to the serial rules in the previous field.
This field may optionally contain the output target for each UR, which the program will
use to check against the actual output as derived by the user’s rules.

●​ Morphological Rules: An optional field containing morphological rules written in the
same style as phonological ones (e.g. ∅ → -ɪŋ / _>), but with a different application.
Each rule in this field applies to each UR independently to create a new stem that is
then fed to the phonological rules. For example, if there are three rules in this field,
three additional derivational columns will be created for each UR, representing three
morphological derivations. This feature is designed for solving problems involving
morphological paradigms.

In addition to the above fields, we find the following ancillary fields:

●​ Metadata: Contains subfields for the provenance of the data, author of the analysis,
analysis version, among other information. This metadata, supplied by the user, is
meant to organize downloaded analyses and to make analyses easily searchable if they
are uploaded to the Phonomaton’s library.

●​ Sample Rules: A set of sample phonological rules that can be inserted into a derivation
with a click of a button.

●​ Library: A collection of implemented analyses and classic phonology problems, which
the user can open and experiment with.

●​ Historical Data Sets: Contains two large data sets of Austronesian historical data: Blust
et al.’s (2023) Austronesian Comparative Dictionary and Edwards’ (2021a,b) Rote-Meto
Comparative Dictionary. Clicking on a particular language from one of these resources
sets the user up to derive attested forms in that language from reconstructed etyma.

●​ IPA chart: A full IPA chart that displays associated feature sets for each segment and
allows the user to compare segments and test for natural classes.

●​ Segments and features: Contains the full feature matrix for each IPA segment,
following Hayes (2009). As in the IPA chart, clicking on multiple segments highlights
their similarities and differences.

5

2.1​ Segments, features and inventories

Figure 1 shows the use of the interactive IPA chart. Here, the user has clicked on four IPA
symbols [θ s ʃ ʂ], which are now highlighted, and the program displays their differences in the
matrix shown in the lavender pop-out window. In this case, the segments only differ in the
features [anterior], [distributed] and [strident] and so only these features are presented in the
matrix. Below that, it lists all the features that these segments have in common. By default, the
Phonomaton employs the feature set of Hayes (2009), although the user can modify the feature
sets of segments and can introduce new segments (see §2.1.2).

The Phonomaton can also compare segments in conjunction with an inventory. An inventory
is declared by listing a set of phones in the preamble (e.g., Inventory: a i u p t k) or simply by
selecting segments in the IPA chart and clicking the “Make inventory” button.

Figure 1. Comparison of segments without an inventory

When an inventory has been declared, the segments it contains are highlighted in the chart
with a blue outline, as seen in Figure 2. At this point, clicking any group of segments shows
their distinctive features if they constitute a natural class within the inventory, in addition to
the standard feature comparison. In Figure 2, the user has clicked three segments, [t θ s], and
the lavender window shows that this is a natural class within the inventory with distinctive
features [-voice,+anterior].

Figure 2. Comparing segments with an inventory

6

If no set of features uniquely distinguishes the group of selected segments, the software notes
that fact and suggests the closest match containing all the selected segments. For instance,
given the same inventory as in Figure 2, the user has clicked [d n θ ð s] in Figure 3. The
lavender box now informs us that this collection of segments does not form a natural class and
suggests the closest match, which in this case involves adding [z] to the set.

Figure 3. Comparing segments that do not form a natural class

In addition to selecting segments directly on the IPA chart, the user can select segments by
their features using the interface shown in Figure 4. Upon selecting a set of feature
specifications, the relevant segments are highlighted in the IPA chart.

Figure 4. Selecting segments by feature

2.1.2​ Custom segments

The Phonomaton also allows the user to create new segments based on a custom set of feature
specifications. This facility can also be used to create segments that are underspecified for
particular features. To take a concrete example, obstruent voicing in Turkish suggests an

7

analysis in which stops in the underlying stratum are underspecified for voice, whereas those
in loan strata are specified. Inkelas (1995) posits the set of stops in (1), where the
“archiphonemes” in (a) lack a voice feature altogether, and the fully specified sets in (b) and (c)
have a negative and positive value for the [voice] feature, respectively.

​ (1)a.​ /P T K/​ []

 b.​ /p t k/​​ [-voice]

​ c.​ /b d g/​​ [+voice]

The user can define segments in the preamble of the rules using the syntax shown in (2).11

(2) ​ Define: T[-syllabic,+consonantal,-sonorant,-continuant,​

-delayed_release,-approximant,-tap,-trill,-nasal,-spread_gl,​
-constr_gl,-labial,-round,-labiodental,+coronal,+anterior,​
-distributed,-strident,-lateral,-dorsal,0high,0low,0front,
0back,0tense]

The declaration in (2) creates a new segment /T/ that is identical to /t/ except that it lacks the
[voice] feature. Define can create completely novel segments with any feature set, and one
can also redefine the feature sets of existing segments by using Redefine. For a language
without contrastive voicing in stops, we could thus redefine stops such as /p t k/ as lacking a
[voice] feature entirely.12 As discussed below in §2.2.2, “feature-filling” rules can subsequently
target segments with underspecified features to provide them with a value in a particular
environment.13

2.2 Phonological rules

Beyond functioning as a feature calculator, the strength of the Phonomaton lies in its ability to
execute ordered rules and derive surface forms from underlying representations. Phonological
rules are written in the traditional SPE notation: rule name: target → change /
environment, and the software executes them in the order they are written. The user can type
rules from scratch in the Phonological Rules field or make use of the sample rules, shown in

13 The program allows a more sweeping modification of the underlying features through the Delete command,
which entirely removes a feature from the feature matrix. For the sake of simplification, the Phonomaton
enforces certain automatic implications inherent to the standard definition of segments. For example, [+nasal]
implies [+sonorant, 0delayed_release], which allows an oral stop to be nasalized with the minimal rule: C →
[+nasal].

12 In keeping with Hayes (2009), the feature matrix also contains zero specifications, which represent unlicensed
features. For instance, [strident] is licensed by [+coronal], and the tongue position features [low, high, front,
back] are licensed by [+dorsal]. There are thus four polarities for a feature: a positive specification, a negative
specification, underspecification, and a zero specification for segments where it is unlicensed.

11 The user need not type the specified features manually. Clicking on any segment in the IPA chart opens the
aforementioned lavender box, which allows one to copy the entire feature matrix into the clipboard.

8

Figure 5, which are automatically pasted into a derivation when clicked and can be modified
manually from there. The sample rule collection contains simple segmental rules as well as
more complex ones for syllabification, mora assignment, footing and stress, which can be
experimented with freely.

Figure 5. The library of sample rules

A simple derivation with two of the sample rules applying to user-generated representations
appears as in Figure 6.

9

Figure 6. A sample derivation

Figure 6 shows two ordered rules that operate on the right edge of the word (symbolized by ‘>’;
see §2.2.4 for full set of boundary symbols) with three underlying representations. The
resulting derivation is shown at the top, where light blue cells show intermediate
representations and blank cells represent the failure of a rule to apply.

2.2.1 The target and change

The user can specify the target, change and environment of a rule directly in IPA symbols and
the common abbreviations C (for [-syllabic] segments), V (for [+syllabic] segments) and X (for
all segments, excluding boundary symbols), as in (3a). All parts of a rule can also refer to
features, as in (3b).

(3)a. k → ɣ / Vː_V
 b. [-continuant,-voice] → [+continuant,+voice,+delayed_release] /

[+syllabic,+long]_[+syllabic]

Rules can make use of traditional feature notation, exemplified in (3b), but the Phonomaton
also introduces several novel methods for relating to features that go beyond textbook
treatments. The symbol ± for a feature in the change means “change only if necessary to match

10

a phone in the inventory” (or, if there is no specified inventory, in the entire IPA). This
specification is useful in cases in which a single phonological process affecting one or more
features implies an incidental change in a different feature only in a subset of the target
segments. For instance, a process of intervocalic lenition may effect the following set of
changes: p → ɸ, t → s, k → x. Such lenition in featural terms is a change to [+continuant,
+delayed release]. However, for the second segment, /t/, there is an additional change from
[-strident] to [+strident], a feature that is incompatible with the bilabial and velar places of
articulation. In this situation, we could write the rule as in (4a), which produces the derivation
in (4b).

(4)a. Intervocalic lenition: C → [+continuant,+delayed_release,±strident] / V_V

 b.​ Underlying representation​ /apa/ ​ /ata/​ /aka/​ /aqa/
Intervocalic lenition​ ​ aɸa​ asa​ axa​ aχa
Surface form​ ​ ​ [aɸa]​ [asa]​ [axa]​ [aχa]

The change to [+strident] is only necessary in the case of /t/, because no segment only differs
from /t/ in being [+continuant, +delayed release] without also being [+strident]. (The other
candidate for a continuant here is [θ], but this segment differs in being [+distributed].)
​ Although ± only causes a change when necessary, a feature change can also be
defeasible, taking place only when possible, given a particular inventory. Defeasible changes are
signaled by the symbols ⊕ and ⊖ preceding a feature, which mean “change to plus or minus,
respectively, if the resulting segment is contained in the inventory.”14 This restriction is the
default behavior when a rule only makes reference to a single feature. For instance, the rule in
(5a) only affects the segments /s/ and /t/ in (5b) because the other segments targetted have
no counterpart differing only in being [-anterior]. We do not expect the change to create an
impossible segment in these other cases; rather, we expect that the rule simply fails to apply.

(5)a.​ Retroflex assimilation: C → [-anterior] / _[-anterior]

​ b.​ Underlying representation​ /apʂa/​/aθʂa/​/asʂa/​ /atʂa/​ /akʂa/​/aqʂa/​

Retroflex assimilation​ ​ ​ aʂʂa​ aʈʂa​
Surface form​ ​ ​ [apʂa]​ [aθʂa]​ [aʂʂa]​ [aʈʂa]​ [akʂa]​ [aqʂa]

However, asserting a defeasible change becomes useful when some partial set of specified
changes still takes place even when the full set of changes invoked cannot apply to all the

14 Another way of conceiving of these operations is as a combination of disjunctive rules. A rule that contains
[voice] as part of the change would first be executed without altering [voice]. Only if this failed would it then
attempt the rule with a change in voice. On the other hand, [⊕voice] and [⊖voice] first attempt to make the
specified change to [voice], and only if this attempt fails is the rule executed without making any change to
[voice]. Compare Bale et al (2014) and Reiss (2022) for alternative approaches to defeasibility in derivational
phonology.

11

relevant segments. For instance, a process of lenition turns voiceless stops into voiced
fricatives, as shown in (6), but if the inventory language lacks a voiced uvular fricative [ʁ],
lenition to a fricative takes place without voicing when applying to uvular stops.

(6)​ /p/ → [β] ​ /k/ → [ɣ] ​ /q/ → [χ]

Such a process can often be modeled by two rules, in this case, a spirantization rule and a
subsequent voicing rule, the second of which would not apply to the uvular because of the gap
in the inventory. But such a two-step approach can fail by incorrectly merging segments that
should remain distinct. For instance, the language may have underlying /ɸ/ and /x/, which do
not voice intervocalically under the same process, yet the underlying spirants would not be
differentiated from derived ones after the spirantization rule. In this scenario, the rule in (7)
obtains exactly the correct result for (6), effecting the change from stops to fricatives across
the board but only adding [+voice] when possible, as signaled by [⊕voice] in the change.

(7)​ Lenition: C → [+continuant, +delayed_release, ⊕voice] / V_V

Another approach to facts such as these makes use of feature deletion. Non-constrastive
features can be removed from the calculation entirely using the Delete command, as in (8).
Here, surface segments may differ in [voice] but rules cannot refer to this feature nor are
differences in [voice] visible to the grammar.

(8)​ Inventory: a p β k ɣ q χ
Delete: [voice]
Lenition: C → [+continuant,+delayed_release] / V_V

Although there are both voiced and voiceless segments in the surface inventory in (8),
non-contrastive voicing can now be treated as simply being concomitant with [+continuant] or
[+delayed release]. Deleting the voice feature can therefore also derive the alternation in (6)
above. This case exemplifies one way in which the Phonomaton facilitates comparison
between competing solutions.

2.2.2 Underspecification and feature-filling rules

As discussed in §2.1.2 above, the user can declare underspecified segments as part of the
preamble. Now we demonstrate how rules can target underspecified values so that they only
provide feature values where none previously exist. First, we introduce an underspecified
segment using Define, as shown in (9a), by copying the features of /t/ and deleting the voice
specification. In (9b), we formulate a rule that is strictly “feature filling”, as signaled by ⊗ in

12

the target.15 The polarity ⊗ only matches an underspecified feature value (that is, neither + nor
-).

(9)a.​ Define:T[-syllabic,+consonantal,-sonorant,-continuant,-delayed_release,

-approximant,-tap,-trill,-nasal,-spread_gl,-constr_gl,-labial,-round,​
-labiodental,+coronal,+anterior,-distributed,-strident,-lateral,-dorsal,​
0high,0low,0front,0back,0tense]

 b.​ Intervocalic voicing: [-syllabic,⊗voice] → [+voice] / V_V

Final devoicing: [-syllabic,⊗voice] → [-voice] / _>

Figure 7 shows a derivation based on (9). Here, intervocalic voicing only applies to /T/, which
is underspecified for [voice], and not to its voiceless counterpart /t/. Similarly, final devoicing
only applies to /T/, and not to its voiced counterpart /d/. Underspecification in conjunction
with ⊗ provides us with an elegant way to model alternations of the type seen in Turkish
voicing, discussed in §2.1.2, where loan strata contain the contrastively voiced stops /t/ and
/d/, but where voicing is underspecified (and therefore predictable) in /T/.

Figure 7. Derivation with a feature-filling rule

2.2.3​ Alpha notation and abbreviations

Alpha notation is available through the use of three Greek letters α, γ, and δ, which may also be
specified negatively. (We omit β because it is identical to the IPA symbol for the bilabial
fricative.) A simple example is given in (10), with a resulting derivation shown in Figure 8. The
rule in (10) uses the variable α to assert that a consonant should match the voicing of an
immediately following consonant.16 The result is that the /g/ in /agta/ assimilates in voice to
the following /t/ to yield [akta] and the /p/ in /apdu/ assimilates in the same way to yield
[abdu]. Alpha notation is thus able to express feature assimilation as a single process whether
it involves a change to a positive or negative specification of a feature.

16 The software decomposes each use of a variable into two separate operations: the first, in which the variable is
taken to have a positive value and the second, in which it is taken to have a negative value. Regressive
assimilation is triggered by a voiceless consonant in the first form but by a voiced stop in the second form; the
changes take place in distinct stages.

15 Bale et al. (2014:244) entertain such an approach but ultimately do not pursue it. Targeting underspecified
features is an approach that has a checkered history in linguistic theory, because underspecification has often
been understood to imply invisibility. This question is outside the scope of the present discussion, but we hope
that the Phonomaton itself can be used to demonstrate the correctness or incorrectness of such an approach.

13

(10)​ Voice assimilation: C → [αvoice] / _[-syllabic,αvoice]

Figure 8: Voice assimilation

We can also use variables to enforce agreement between the target and the
environment. For instance, (11) asserts that a vowel should agree with the following vowel in
the feature [round] when both vowels match for height features [high] and [low]. Here we
explicitly state the labial feature as ± in the target, so the target’s [labial] value can change if
necessary to satisfy rounding assimilation.

(11) Voice assimilation: [+syllabic,γhigh] → [αround,±labial] /
 _[+syllabic,αround,γhigh]

Figure 9 shows a derivation resulting from this rule. Because the derivation is decomposed into
all the combinatorial possibilities, the exact condition under which the change takes place is
displayed clearly.

Figure 9. Variables in the target and environment

The first two forms in Figure 9, /bui/ and /biu/, trigger regressive assimilation because
the two adjacent vowels are of similar height. The last two forms, /bue/ and /beu/, however,
do not undergo rounding harmony because the adjacent vowels are of different heights.

2.2.4​ Morphological boundaries

The Phonomaton recognizes several morphological boundaries in the underlying forms,
employing the standard symbolic notation of the Leipzig Glossing Rules: - for prefix and suffix
boundaries, ~ for reduplicant boundaries, ⟨ ⟩ for infix boundaries, = for clitic boundaries, and
white space for word boundaries. Departing from tradition, we provide a boundary symbol ⇒

14

when an analysis needs to differentiate prefix or proclitic boundaries from suffix or enclitic
boundaries. The symbol ≣ is also provided for indicating special morphosyntactic junctures.17
Phonological rules can reference generic word boundaries by # and left and right word
boundaries by < and >, respectively. Therefore, one can write a word-final devoicing rule as in
(12).

​ (12)​ Final devoicing: [-syllabic] → [-voice] / _>

A rule that raises mid vowels before enclitic boundaries and word-finally can be written as in
(13). Disjunction is written with the elements separated by the vertical bar character and
enclosed in parenthesis (see §2.2.6, below).
​

​ (13)​ Final raising: [+syllabic,-low] → [+high] / _(=|>)

2.2.5​ Segment indexing

Certain processes, like metathesis, require indexing segments in a rule’s target and change.
The Phonomaton employs superscripts (from ¹ to ⁴) to index segments. The rule in (14)
matches a sequence of two consonants in which the first is coronal and the second is labial.
The rule defines variables by labelling the relevant segments with a superscript; these indices
appear again in the change, this time without any preceding features or segments.

(14) ​ metathesis: [-syllabic,+coronal]¹[-syllabic,+labial]² → ²¹

The result of (14) is to swap a coronal consonant with a following labial consonant, as shown in
Figure 10.

Figure 10. A derivation showing metathesis of coronal and labial stops

Indexing also assists in rules for total assimilation, reduplication, gemination and
degemination. The Phonomaton requires that indices be associated to segments in the target,
so a rule of total assimilation only contains a target and a change, as in (15a), and not as in the

17 For one use of the special prefix/proclitic boundary, see the implementation of the Sanskrit nati rule in the
Phonomaton’s sample derivations. For an example of the ≣ boundary, see the implementation of Japanese
compound accent, where ≣ represents the morphosyntactic juncture between the elements of a compound. None
of the -, =, ≣, or ⇒ symbols bears any phonological features and can be deployed in whatever way the user finds
convenient.

15

traditional form shown in (15b) with a target, change and environment, because the latter
invalidly employs an index in the change and environment without associating it in the target.

(15)​ Total Assimilation of a nasal to a following consonant
 ​ a.​ ✓ [+nasal][+consonantal]¹ → ¹¹​
 ​ b. ​ ✗ [+nasal] → ¹ / _[+consonantal]¹

Similarly, a rule of vowel copying, often written in a form like (16b), runs afoul of the
requirement that the target define each index. Such rules can easily be reformulated as in
(16a), where the entire environment is targeted and copied with a modification. Despite being
common practice, it is redundant to repeat the Cs and Vs in the change and thus disallowed.

(16) ​ Vowel copying
 a.​ ✓ V¹C²C³ → ¹²¹³ /_#​

 ​ b. ​ ✗ Ø → ¹ / V¹C_C#

One can write complex rules of reduplication (a morphological operation) using indices in
conjunction with simple regular expressions. The rule in (17) reduplicates a word-initial onset
followed by the vowel /a/, an example of reduplication with “fixed segmentalism”. Figure 11
shows the resulting derivation for three underlying forms.

(17)​ Reduplication: C¹V² → ¹a¹² / <_

​

 Figure 11. A derivation showing reduplication with fixed segmentalism

Indexed segments can also undergo featural modifications. Any features specified before an
index in the change component of a rule apply to the indexed segment in the output. In (18),
the features [-high,-low,-tense] apply to the first instance of segment indexed by ², that is, the
first vowel in the stem. Figure 12 shows sample derivations.

(18) ​ Reduplication: C¹V² → ¹[-high,-low,-tense]²¹² / <_

Figure 12. Reduplication with partial neutralization

16

2.2.6​ Regular expression syntax

The Phonomaton allows regular expressions in the target and environment of a rule, the most
important component of which are quantifiers. In (19) we present a comparison between the
regular expressions for quantifiers used by the Phonomaton (based on Perl’s regex notation)
and the familiar SPE notation (Chomsky and Halle 1968).

(19)​ Quantifier​ ​ ​ Example ​ ​ SPE

​ *​ zero or more​ ​ C*​ ​ ​ 𝐶
0

​ ?​ zero or one​ ​ C?​ ​ ​ or (C) 𝐶
0
1

​ +​ one or more​ ​ C+​ ​ ​ 𝐶
1

​ ​ {x,y}​ range min to max​ C{2,4}​ ​ ​ ​ (from 2 to 4) 𝐶
2
4

Thus, a rule of vowel lowering that applies at the end of the word can be specified to occur
regardless of the presence of a word-final coda, as in (20a), with either a simple word-final
coda or no coda at all, as in (20b), with a simple or complex coda, as in (20c), or with a complex
coda of two to four consonants, as in the unlikely case of (20d).

(20)a.​ V → [-high] / _C*>
 b.​ V → [-high] / _C?>
 c.​ V → [-high] / _C+>
 d.​ V → [-high] / _C{2,4}>

These quantifiers can combine with indices to handle complex cases of reduplication. In (21a),
we see word-initial CV-reduplication. In (21b), we see reduplication of a word-initial unit
containing two vowels and their preceding consonants (a disyllable, in the common case). The
index in the target captures the entire expression within the parenthesized group, which is
then duplicated in the change. The environment ensures that this process is anchored to the
left edge of the word.

(21)a.​ (C*V)¹ → ¹¹ / <_
 b.​ (C*VC*V)¹ → ¹¹ / <_

Regular expressions also work in conjunction with various feature specifications and
underspecification to model locality and blocking effects. Consider the case of retroflex
harmony, where /ʃ/ assimilates to the [-distributed] feature of a retroflex when the retroflex
precedes it. We can model this process as in (22), which says that a [-anterior] consonant
becomes [-distributed] (retroflex), when preceded anywhere in the word by a
[-distributed,-anterior] segment. The symbol X stands for any segment and X* stands for zero

17

or more segments, so the process operates long-distance.

(22)​ Retroflex assimilation:​
​ ​ [-syllabic,-anterior] → [-distributed] / [-distributed,-anterior]X*_

We can also model blocking effects for rules such as these. If we modify the above environment
as in (23), the rule will now only apply when the segments intervening between the target and
the preceding trigger are [-coronal].

(23)​ ... / [-distributed,-anterior][-coronal]*_

Figure 13 shows a derivation based on this rule; the dorsal consonant /k/ in the first form is
transparent for retroflex harmony, but the intervening /s/ in the second form, being coronal,
is opaque and thus blocks assimilation.

Figure 13. Retroflex harmony blocking

Another relevant feature of regular expressions is grouping and alternation (signaled by brace
notation in the SPE). If a rule must make reference to segments that cannot be generalized by
features, it can express alternation by the vertical bar symbol. For instance, a change that
takes place only before phonemes /s d ɣ/ at the end of a word is expressed as in (24).

(24) ​ a → ə / _(s|d|ɣ)>

2.2.7 ​ Types of rule application and a brief look at syllabification

The Phonomaton allows for four flavors of rule application. The default is for a rule to apply
wherever it can, scanning an underlying or intermediate representation from left to right. But
rules can also apply iteratively, in which case the output of the rule can feed another
application of the same rule. The default application of a nasalization rule is shown in (26a)
while its iterative counterpart is shown in (25b).

(25)a. ​ V → [+nasal] / _C*[+nasal]
 b. ​ V → [+nasal] / _C*[+nasal] // iterate

The rule in (25a) would apply to a representation like /balabon/ to derive [balabõn], whereas
that in (25b) would derive [bãlãbõn]. The iterative rule in (25b) takes the output of its
application as its input until no more changes can be made, at which point the derivation
proceeds to the next rule.

18

Other cases require a rule to apply only to its maximal environment, as per the Pāṇini
Principle (also known as the Subset Principle or Elsewhere Condition). Among other cases, this
is crucial for syllabifying strings algorithmically, by rules that insert onset and coda
boundaries, as exemplified in (26).

(26)​ Onset: ∅ → ❬ / _(([-sonorant]?[+approximant,-syllabic]?)|C)V // exclusive
Coda: ∅ → ❭ / VC?_ // exclusive

The onset rule in (26) states: insert an onset boundary (❬) preceding a vowel, optionally
preceded by (i) an approximant (i.e., trills, taps, laterals, glides), in turn optionally preceded by
a non-sonorant, or (ii) a singleton consonant of any type. The embedded parenthesis group
captures certain types of CC clusters, such as the ones listed below Option I in (27), while
excluding others (e.g., ml, rl, nt), which do not fit this template.

(27) ​ Option I​ ​ Option II

(([-sonorant]?[+approximant,-syllabic]?) | C)
​ ​ ​ t r​ ​ ​ ​ t

​ ​ p​ ​ j​ ​ ​ ​ r
​ k l n

 s​ ​ w ​ ​ ​ ​ m

Because each part of the embedded group is optional, this part of the pattern could also
capture singleton onsets that fit the given feature specifications. However, we would still need
Option II for a C of any type if there are singleton onsets that do not participate in clusters. For
instance, our onset rule in (26) describes a language that allows nasal onsets but does not allow
nasals in either component of a CC cluster, because a [+sonorant,-approximant] segment such
as m, n, ŋ is not captured by either component of Option I.

The Coda rule in (26) is simpler and allows for a singleton coda consonant of any type.
Crucially, the specification exclusive at the end of both rules ensures that the boundaries will
only be inserted once at the edge of the maximal string containing the optional segments
rather than at every possible point. Otherwise, a UR such as /blabla/ would result in
❬b❬l❬a❭❬b❬l❬a❭ instead of the correct ❬bla❭❬bla❭.18

2.3 Morphological rules

Exercises in phonology courses commonly present a paradigm, which the student must
analyze into a set of roots and affixes or other morphophonological processes. One example of

18 In rarer cases, it is necessary to restrict the application of a rule even more strictly so that it only applies once
per input. This can be done with the specification once following the rule. Not discussed here is the question of
directionality. Environments are scanned from left to right in the Phonomaton but there is a workaround if the
reverse is required. If the rule environment begins with <X* (left word boudary followed by any number of
segments) the quantifier will first expand the pattern as far as possible before advancing to the next element in
the environment and thus yield what is essentially right to left scanning.

19

such an exercise, based on Serbo-Croatian adjectives, is shown in Table 1 (Kenstowicz and
Kisseberth 1979: 74).

MASC FEM NEUT PL GLOSS

mlád mladá mladó mladí ‘young’

zelén zelená zelenó zelení ‘green’

púst pustá pustó pustí ‘empty’

lédan ledná lednó lední ‘frozen’

dóbar dobrá dobró dobrí ‘good’

jásan jasná jasnó jasní ‘clear’

debéo debelá debeló debelí ‘fat’

béo belá beló belí ‘white’

mío milá miló milí ‘dear’

nágao naglá nagló naglí ‘abrupt’

óbao oblá obló oblí ‘round’

pódao podlá podló podlí ‘base’

Table 1. Serbo-Croatian adjective paradigm

Co-opting the [tone_high] feature to indicate stress for simplicity's sake (as the Phonomaton
does not treat stress as a segmental feature), we can derive the forms in Table 1 with the
phonological rules in (28a) and the morphological rules in (28b).

(28)a. Phonological rules
Stress Assignment: V → [+tone_high] / _C*>
Epenthesis: ∅ → a / C_C>
L-vocalization: l → o / _>

 b. Morphological rules
FEM: 0 → a / _>
NEUT: 0 → o / _>
PL: 0 → i / _>

The Phonomaton applies each morphological rule to each underlying representation to create
an input form, as shown in Figure 14 for the underlying representations /ledn/, /debel/ and

20

/nagl/. We see the bare underlying representation, as well, preceding the forms that have
undergone morphological rules.19

Figure 14. Serbo-Croatian derivation with morphological rules

The Phonomaton accepts morphological rules in the same format as phonological rules. For
instance, a rule introducing a simple affix converts a null to the phonological form of the affix
in a word-edge environment, namely <_ for prefixes and _> for suffixes. This approach also
facilitates modeling non-concatenative processes such as lenition, ablaut and infixation, as any
process that can be written as a phonological rule can be treated as a morphological rule.

With this, we conclude our review of the program’s features and proceed to how it has been
implemented in the classroom.

3.0​ The Phonomaton as a teaching tool

3.1​ Pedagogically oriented features

Crucial to its pedagogical function is the Phonomaton's ability to save and upload analyses.
Saving an analysis downloads the data found in each component (underlying representation,
phonological rules, and morphological rules) as a single, human-readable text file, with all the
contents of the analysis appearing precisely as in the web interface. Analyses are downloaded
and uploaded with a single click without any need to log in or register. Students can use these
downloaded analyses as submittals to class exercises for the instructor to check.

An advantage to treating phonological derivations as code is that an analysis can be
interspersed with comments that are not executed by the program, following Knuth's (1992)
popular concept of "literate programming", whereby the programmer writes code as an
expository text for a human audience interspersed with executable lines directed at the
software. The program explains itself as it goes, preceding the expository comments with a
character that tells the program not to execute that particular line. This approach has become
routine in reproducible research and can be easily applied to executable linguistic analysis of

19 This facility is strictly for producing paradigms, as shown; each morphological rule derives a single column in
the table. More complex derivations based on abstract morphological input are also possible too but are not
discussed here.

21

the type presented here. The following brief example demonstrates the idea with the complex
vowel length alternations of Chimwiini. The comments, not executed by the program, are
preceded by %.

% Epenthesize a vowel to stems ending in a consonant:

Final vowel attachment: Ø → a / C_>

% Lengthen all word-final vowels:

Word final lengthening: V → [+long] / _>

% Shorten all vowels that precede the third syllable from the end. This is
implemented here by referring to vowels rather than syllables. The following rule's
environment looks for three vowels in the forward context that can be interrupted by
any number of segments or boundary symbols (word boundaries, in this case):

Preantepenultimate shortening: V → [-long] / _.*V.*V.*V

% Shorten a vowel at the end of a phrase, represented by the end of the line $:

Phrase final shortening: V → [-long] / _$

% Shorten a vowel that precedes a long vowel. The environment specifies that any
number of consonants (C*) can intervene between the long vowel trigger and the
target:

Pre-long shortening: V → [-long] / _C*[+syllabic,+long]

When the code above is executed it yields the derivation shown in Figure 15, with the given
underlying representations.

Figure 15: Chimwiini vowel alternations

Another pedagogically relevant feature of note in Figure 15 is the final row in the table headed

22

by "expected". In the field where underlying representations are entered, the user can
optionally add the expected surface form following the representation separated by a double
backslash, e.g. kama mpʰaka // kamaː mpʰaka. This inclusion has the effect of displaying the
expected form at the bottom of each column and checking it against the actual derived form.20
If the two match, the expected form is displayed in green, as above. If they do not match, the
expected form is highlighted in red. This feature is also convenient for creating problem sets,
which an instructor can present as a blank Phonomaton analysis with expected surface forms;
the students' task is then to provide the underlying representations and rules.21

3.2​ Implementation

We have received constructive input from two introductory phonology courses where an
earlier version of the Phonomaton was employed. We report here from a survey of 19 students
who used the program in the Spring 2024 semester at Queens College (City University of New
York), where the first author was the instructor and the third author was the teaching
assistant. In addition to the positive comments, we highlight here some of the critical ones, as
well, since we believe these uncover important issues in the use of technology in the classroom
more broadly.

For context, Queens College is part of the City University of New York, a public university with
a mission of making higher education accessible to all.22 The campus is among the most diverse
in the country, and over a third of the students are the first generation in their families to
attend college. Within the undergraduate linguistics program, there is also a relatively wide
range in the students’ level of preparation. Some students could compete handily with their
peers in the most prestigious departments, while others are not yet comfortable with the
technical aspects of linguistic analysis. Optimally, the Phonomaton would lift all boats, aiding
both advanced students as well as those who did not yet have a strong grasp of the
fundamentals.

In the semester-long trial, the students submitted all their work as Phonomaton analyses, so
they already knew whether their solutions were formatted correctly and generated the desired

22 In the relevant period, enrollment was just under 14,000 students with an acceptance rate of approximately
70%. In the same time period, the student body was reported to be 74% minority and 51% of the students received
Pell grants.

21 An additional feature, which we cannot delve into here, sends the surface form (simply by clicking it) to a
text-to-speech generator so that it can be output as audio. This audio in turn can, with another click, be
transformed into a spectrogram through Praat (Boersma and Weenink 1992–2023), which runs behind the scenes.
While this ability offers tantalizing possibilities of displaying the phonetic results (and motivations) of
phonological rules in real time, it is hampered by the available text-to-speech technology, which is very much
language-specific.

20 When used in conjunction with morphological rules, as described in §2.3, the various forms expected by each
morphological rule are separated by a single slash following the double slash after the UR. For instance, the UR
and expected output for the first set in the Serbo-Croatian example in Figure 14 would be given as: ledn // lédan
/ ledná / lednó / lední.

23

results. The instructor’s role in evaluating assignments could then focus on questions of
economy, insight, and naturalness, which are higher-level matters often occluded by the effort
to get the mechanics right. The instructor also made frequent use of the Phonomaton during
lectures in order to show the various effects of rules and their interactions. Overall, the
majority of the students found the Phonomaton helpful, as seen in Figure 16, although a
considerable number of students had mixed feelings and four students responded negatively.

Figure 16. Responses to ‘Was the Phonomaton helpful?’

When asked about their favorite aspect of the program, 8 students responded with reference
to finding and calculating features, 6 students chose the Phonomaton’s ability to check their
work and another 6 students chose the ability to calculate and display derivations. Several
remarks in response to the question, “Did you find the Phonomaton program helpful in
learning how phonological rules and derivations work? Why or why not? What were the best
and worst parts of it?” made reference to verifying the output of rules and their interactions:

“I found the Phonomaton helpful and the best part of the Phonomaton for me was
seeing each rule in action. I could see exactly how each rule changed the underlying
representation.”

“Seeing exactly how my rules affect the underlying forms helped me think of them
algorithmically.”

“I really enjoyed how it showed how the UF [underlying forms] were changed step by step by
the different rules. Having a program perform the rules for you was much more efficient,
especially across large data sets. It was very salient to see where rules did and did not work to
create a correct SF [surface form], and that was very helpful.”

24

“I really liked seeing you use it in class to demonstrate rule ordering. I found that very
helpful to understand how underlying forms can change and how rules can
feed/counterfeed/bleed other rules.”

Other comments noted how the program helped them understand feature systems, which
involve a steep learning curve, as students have to unlearn descriptive categories, such as stop,
fricative, and affricate, in order to learn more abstract features that do not always have easily
discernible physical or acoustic correlates (such as [distributed] and [dorsal]):

“My favorite part of the phonomaton was showing how IPA sound[s] share certain features, as
well as what features change as you go from one sound to another. It really helped me
understand the concept of features to begin with, and how much languages tend to care more
about features than individual phonemes.”

As for the worst parts of the program, students largely referred to its sensitivity to small errors
and the lack of helpful error messages. In the most critical remark to this effect, the student
stated that the program actually detracted from their learning because they were so
concerned about getting the program to work as they expected. We return to these points
below.

During the course, early exercises on features and on the mechanics of rule writing were
assigned in two stages. In the first stage, the assignment was to be done by hand and submitted
in the normal manner. In the second stage, the students had to complete the same problem
using the Phonomaton, from which they downloaded and submitted their analysis. The
exercises were not discussed in class until after the second stage. In the exercise on applying
rules, students were given a rule (e.g., ə → ∅ / VC_CV) and asked to apply it to a number of
underlying forms. In the exercise on writing rules, they were given three underlying forms
with their corresponding surface forms and asked to devise a rule that accounted for the
alternations. The before and after assessments for both assignments are shown in Figure 17.

25

Figure 17. Assessments before and after using the Phonomaton

The scores improved significantly, especially in relation to rule writing, when the students had
the opportunity to manipulate and check their analyses using the Phonomaton. Whereas many
students struggled with consistent formalization of rules in the first stage, through
experimenting with different possibilities, they were able to self-correct to a large extent
during the second stage.

A different exercise, adapted from Hayes (2009:101), presented the students with
statements like that in (29a), which they were expected to translate into feature-based rules
like that in (29b), given a particular inventory of vowels and consonants.

(29)a.​ [i y ɯ u] become [e ø ɤ o] before [q ɴ].
 b. ​ [+syllabic, +high] → [-high] / _[-continuant, +dorsal, -high]

The Phonomaton led to a 30% improvement in the second attempt over the first one, where
students only had the aid of a static feature chart. However, in this case, it can be argued that
the problem becomes trivial with the help of the Phonomaton, as the program calculates
natural classes and featural differences within any subset of segments. The user must only
enter the relevant inventory and check each pair to ensure that a particular change in features
accounts for the entire alternation. To this point, an anonymous reviewer asks, “What happens
if the student needs Phonomaton to identify a natural class? Do they learn this concept if the
program does it for them?” Overall improvements in classroom-based assessments, where the
students did not have access to the program, suggest that the program helped overcome the
considerable initial difficulties that the stage-one scores revealed. However, our evaluation
was not comprehensive enough to compare classroom based assessments on exactly the same
type of material before and after the students worked with the Phonomaton. Our future
evaluations of the program will attempt to pinpoint how the Phonomaton aids progress in

26

independent work, as opposed to overall improvements. We note, though, that the program
does not aim to explain phonology any more than a calculator is meant to explain concepts in
math.23 For a well motivated student who independently explores the various possibilities of
rule formulation and interaction, we believe the program could serve a broader function, but
the Phonomaton is not designed to replace instruction.24 One student noted this explicitly in
the survey:

“I don't know if I would say it was helpful for learning HOW rules and derivations work, it was
helpful moreso for checking rules and derivations and also troubleshooting rules that were
slightly wrong. I feel like the logic behind the rules had to be learned without the
Phonomaton.”

The two biggest challenges encountered in applying the software pedagogically were (i) the
lack of guidance on malformed rules, and (ii) an unevenness in how the tool was taken up by
students at different levels of proficiency. We believe these two challenges are linked. The
most common complaint in the evaluations of the program had to do with the unhelpful error
messages that malformed rules would trigger. Perhaps in our nearly eagerness for the
Phonomaton to handle as much phonological theory as possible, including autosegmental
phonology and Optimality Theory (not discussed here for reasons of space), we skimped on
what turned out to be the most important element for novices: detailed guidance on the
mechanics of rule writing. Based on the evaluations, we have remedied this problem to a large
extent. The program now pinpoints which rule and what part of that rule contains an error,
calling out specific problems such as a missing underscore, a missing arrow, a missing bracket,
and invoking a feature that doesn’t exist. Most likely as a result of this lacuna in the original
trial semester, we found a strong correlation between the students’ overall grades in the
course and their assessment of the Phonomaton. Those who achieved higher scores in
assessments and in the course as a whole consistently reported finding the Phonomaton more
useful. We address this problem with urgency because, if left untreated, it could yield precisely
the opposite effect of what we had originally set out to do, namely, to lift all boats, and instead
simply exacerbate the gap between those who are already comfortable with mathematical

24 An anonymous reviewer asks whether mastering the various formalisms of rule writing in the Phonomaton
actually facilitates learning of concepts. We would argue that adopting any formalism in and of itself only
encourages precision and consistency. It is, rather, the process of independent exploration and tinkering with
derivations that allows for a far more thorough appreciation of the concepts, more thorough, in all likelihood,
than what can be expected from absorbing the concept through a lecture or readings. The central role of the
instructor in this case becomes motivating students to explore and tinker. The approach we are currently
developing in this regard involves a set of open-ended exercises without fixed solutions. For instance, students
may be tasked with constructing their own cases of bleeding, feeding, counterfeeding, counterbleeding, etc. or
with devising a feature geometry that could handle various types of assimilations of their making. We leave a
discussion of these methods to further work.

23 Research in math education has shown that the appropriate use of calculators actually bolsters skills in unaided
calculation (Hembree and Dessart 1992, inter alia) but that the tool itself is insufficient to yield substantive change
without being deployed thoughtfully (Ruthven 1996).

27

formalism and algorithmic thinking upon entering the course and those who are not. Now that
the program offers friendly guidance in rule formulation and allows for a bit more flexibility,
we expect a more even response across students at varying levels of proficiency. In particular,
we aim for this aspect of the program to have a broader impact in opening the doors to
computational thinking for those students who may not take naturally to rule syntax and
mathematical formalization.25

There are several facilities that have not yet been integrated into the Phonomaton but that
would be useful to students in optimizing a working analysis. The program could check not
only whether a derivation achieves its desired target, as it does now, but whether or not there
are redundancies in the rules (e.g., reference to features that do not need to be invoked, or
overspecified rule environments). The program could also gauge the complexity of a given
analysis and assign a numeric score based on the number of rules and specifications for each
rule. Although formal economy metrics of this type have never been widely adopted in
theoretical phonology, they could serve an important pedagogical function. We continue to
explore these and other potential extensions of the program.

4.0 Conclusion

Bird (2003:45) outlines some of the challenges in producing a “phonologist’s workbench”
program:

“A phonologist’s workbench should help people to ‘debug’ their analyses and spot
errors before going to press with an analysis. Developing such tools is much more
difficult than it might appear. First, there is no agreed method for modelling
non-linear representations, and each proposal has shortcomings. Second, processing
data sets presents its own set of problems, having to do with tokenization, symbols
which are ambiguous as to their featural decomposition, symbols marked as uncertain
or optional, and so on. Third, some innocuous looking rules and constraints may be
surprisingly difficult to model, and it might only be possible to approximate the
desired behavior. Additionally, certain universal principles and tendencies may be
hard to express in a formal manner.”

Similarly, Piwowarczyk (2022) notes in his review of computational models of historical sound
change that:

“[...] very few have actually ventured to take historical sound change rules from
textbooks of well studied languages and develop a working computer model. And

25 In response to an anonymous reviewer’s query regarding how much time it takes to learn the interface, we
emphasize that the rule syntax is only a minor elaboration of the classic SPE formalism. There is very little special
syntax that one has to learn to operate the program. As can be seen in the Chimwiini example in the beginning of
this section, the Phonomaton “code” that a user produces does not look very different from the familiar
derivational analyses that can be found in any introductory textbook.

28

anyone who HAS ventured into this territory has quickly realized that there is a world
of difference between the rules as they are written in standard linguistic notation and
as they need to be written in computer models.”

The Phonomaton has taken up this challenge, and we can attest to all the difficulties
mentioned above. However, the value of a user-friendly phonological rule engine is well worth
the trouble. Such a program can help students grasp the more daunting formal aspects of
phonology by encouraging experimentation. Furthermore, the tool can serve as a bridge to
precise thinking about language and an interactive proof that a theory produces the expected
results, in contrast to the typically under-formalized presentations found in textbooks. On a
higher level, a program such as the one presented here leads the way to reconfiguring
linguistics pedagogy as "contructionism", in the sense of Papert (1990), in which students build
concrete versions of abstract concepts and have the pleasure of seeing their creations produce
results with novel input. In this scenario, students adopt precise formulations as they learn to
communicate with the program, not simply because the instructor demands it. In other words,
it is constructionism rather than instructionism that ultimately guides the students.

The rigor enforced by computability also pays dividends to professional linguists. The reader
may have noticed that, despite opening with a jeremiad on the fragmentation of linguistic
theory, many of the Phonomaton's capabilities presented here are novel (e.g. the use of ±, ⊕, ⊖,
⊗, feature deletion and the use of phonetic inventories, discussed in §2.2). To a large extent,
these innovations were brought about by our failure to implement solutions to classic
problems as typically presented in textbooks. In this case, the standard of computability has
suggested new ways of interacting with features and underspecification. The ethos of the
project, however, aims to provide multiple strategies to solve problems, in the spirit of
exploring advantages and drawbacks to different approaches. We now have a formal
framework from which we can argue for or against such innovations.

In closing, we point out some further directions for the Phonomaton and their potential
impacts. The current norm in teaching any introductory theoretical linguistics course,
including Phonology, involves a rapidly moving semester-long carousel of concepts
exemplified by disembodied snippets from a wide variety of languages. As theories have
developed in their complexity, there has been a waning interest in producing works on the
scale of the SPE, the Sound Pattern of Russian (Halle 1959/1971), Spanish Phonology (Harris 1969),
among many others of that era, which attempt to tackle entire phonological grammars. We
hope that the Phonomaton will rekindle an appetite for holistic projects of this nature by
enforcing consistency and opening the analysis to public inspection and testing. The
possibility of collaboration on a large-scale phonological grammar is even more tantalizing.26

26 Although not discussed here, we also aim for interaction with the burgeoning field of computational phonology
proper (see Bird 2003, Daland 2014 and Chandlee and Heinz 2016 for relatively recent summaries). This will
naturally require laying bare the inner workings of the program for a comparison with current (mostly finite
state) models. As this is of little relevance to our current focus on pedagogy at introductory levels, we leave it to

29

We see a certain urgency to the program presented here. In the foundational stories of the
generative revolution, Chomsky's algorithmic approach was built atop the ruins of
structuralism and behaviorism. Ironically, seventy years after behaviorism had been all but
vanquished in mainstream linguistics it has made its return through the backdoor of natural
language processing, to devastating effect. In particular, ChatGPT, the first publicly available
language model to convincingly pass the Turing test, appears to make no use whatsoever of
the facts, solutions and general wisdom accumulated over nearly a century of generative
explorations of the human language faculty.27 Mainstream linguistics, having staked so much
in abstract structure and symbolic manipulation, now appears in a pitched battle with a type
of "deep learning" that is largely opaque and illegible to human observers. So complete is the
circle that Chomsky et al. (2023) rehearse many of the same arguments against "deep learning"
language models that Chomsky (1959) famously deployed against Skinner over sixty years
earlier. Surely it will not be a phonological rule engine that saves algorithmic approaches from
the depredations of "deep learning", if that indeed materializes as an existential threat. We
hope, however, that it can serve as a small bridge between computer science and the cognitive
approaches to language that have come to define the field from Pāṇini to the present day. Most
immediately, however, it is our aim to make these approaches more accessible and easier to
learn for new generations of students and to help them pivot to broader applications by
framing phonology as coding.

References

Albro, Daniel. 1999. PhonologyPad [Computer program]. Accessed 7/10/2024 from
https://brucehayes.org/120a/PhonologyPad.htm.

Anderson, Stephen R. 2021. Phonology in the Twentieth Century. Second edition. Berlin: Language Science
Press.

Bale, Alan, Maxime Papillon and Charles Reiss. 2014. Targeting underspecified segments: A formal
analysis of feature-changing and feature-filling rules. Lingua 148: 240-253.

Bale, Alan and Charles Reiss. 2018. Phonology: A Formal Introduction. Cambridge, MA: MIT Press.
Barker-Plummer, David, Barwise, John and John Etchemendy. 1999. Language, Proof and Logic. Stanford:

CSLI Publications.
Bender, Emily M. and Alexander Koller. 2020. Climbing towards NLU: On Meaning, Form, and

Understanding in the Age of Data. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5185–5198, Online. Association for Computational
Linguistics.

Bird, Steven. 2003. Phonology. In Ruslan Mitkov (ed.), Oxford Handbook of Computational Linguistics, pp.

27 For what the Turing test is worth in the current context, see Bender and Koller (2020). Regardless of the deeper
questions and ChatGPT's use of pure probabilities in place of meaningful structures, it is an engineering feat on
par with the defeat of world's top chess and go players that is sure to attract even greater attention and funding
in the coming years. Even Chomsky et al. (2023) refer to ChatGPT and its ilk as "marvels of machine learning."

further work.

30

https://brucehayes.org/120a/PhonologyPad.htm

3–24. Oxford: Oxford University Press.
Robert Blust, Stephen Trussel, & Alexander D. Smith. 2023. CLDF dataset derived from Blust's

"Austronesian Comparative Dictionary" (v1.2) [Data set]. Zenodo.
https://doi.org/10.5281/zenodo.7741197

Boersma, Paul and David Weenink. 1992–2023. Praat: doing phonetics by computer (v6.2.06) [Computer
program]. Accessed 6/23/23 from https://www.praat.org.

Chandlee, Jane and Jeffrey Heinz. 2016. Computational phonology. In Mark Aronoff (ed.), Oxford Research
Encyclopedia of Linguistics. Oxford: Oxford University Press.

Champollion, Lucas, Joshua Tauberer and Maribel Romero. 2007. “The Penn Lambda Calculator:
Pedagogical Software for Natural Language Semantics”, in T. Holloway King and E. M. Bender
(eds.), Proceedings of the Grammar Engineering across Frameworks (GEAF) 2007 Workshop.
Stanford, CA, July 13-15 2007. CSLI On-line Publications.

Chandlee, Jane and Jeffrey Heinz. 2016. Computational phonology. In Mark Aronoff (ed.), Oxford Research
Encyclopedia of Linguistics. Oxford: Oxford University Press.

Charity Hudley, Anne H., Christine Mallinson and Mary Bucholtz. 2020. Toward racial justice in
linguistics: Interdisciplinary insights into theorizing race in the discipline and diversifying the
profession. Language 96(4), pp. e200-e235.

Chomsky Noam. 1959. Review of B. F. Skinner, Verbal Behavior. Language 35: 26–58.
Chomsky, Noam. 1967. Some general properties of phonological rules. Language 43: 102-128.
Chomsky, Noam, and Morris Halle. 1968. The Sound Pattern of English. New York: Harper and Row.
Chomsky, Noam, Ian Roberts and Jeffrey Watumull. 2023. "The False Promise of ChatGPT". New York

Times Op-ed, March 8, 2023.
https://www.nytimes.com/2023/03/08/opinion/noam-chomsky-chatgpt-ai.html

Daland, Robert. 2014. What is computational phonology? Loquens 1.
Edwards, Owen. 2021a. Rote-Meto Comparative Dictionary. Canberra: ANU Press.
Edwards, Owen. 2021b. Supplementary material for "Rote-Meto Comparative Dictionary". Accessed

1/11/2025 from
https://openresearch-repository.anu.edu.au/items/3fc2bd74-3fd5-4660-bbc9-a81c66bfbf3b.

Einaudi, Peter, Jonathan Gordon, and Kelly Kang. 2022. Baccalaureate Origins of Underrepresented
Minority Research Doctorate Recipients. NSF 22-335. National Center for Science and
Engineering Statistics. Accessed 6/19/2023 from https://ncses.nsf.gov/pubs/nsf22335.

Finkel, Raphael. 2016. "Computer-Based Tools for Word and Paradigm Computational Morphology".
Oxford Research Encyclopedia of Linguistics. Oxford: OUP.
https://doi.org/10.1093/acrefore/9780199384655.013.162

Halle, Morris. 1959/1971. The Sound Pattern of Russian: A linguistic and acoustical investigation. Second
edition. The Hague: Mouton.

Harris, James W. 1969. Spanish Phonology. Cambridge: MIT Press.
Hayes, Bruce. 2009. Introducing Phonology. Malden, MA: Wiley-Blackwell.
Hembree, Ray and Donald Dessart. 1992. Research on calculators in mathematics education. In J. Fey

and C. Hirsch (eds.) Calculators in Mathematics Education, pp.23-32. Reston, VA: National Council
of Teachers of Mathematics.

Inkelas, Sharon. 1995. The consequences of optimization for underspecification. In: Jill Beckman (ed.),
Proceedings of the North East Linguistic Society, vol. 25. Graduate Linguistic Student Association,
University of Pennsylvania, pp. 287-302.

31

https://www.nytimes.com/2023/03/08/opinion/noam-chomsky-chatgpt-ai.html
https://openresearch-repository.anu.edu.au/items/3fc2bd74-3fd5-4660-bbc9-a81c66bfbf3b
https://ncses.nsf.gov/pubs/nsf22335
https://doi.org/10.1093/acrefore/9780199384655.013.162

Johnson, C. Douglas. 1972. Formal Aspects of Phonological Description. The Hague: Mouton De Gruyter.
Kenstowicz, MIchael and Charles W. Kisseberth. 1979. Generative Phonology: Description and Theory. New

York: Academic Press.
Kisseberth, Charles W. and Mohammad Imam Abasheikh. 1974. “Vowel length in Chi-Mwi:ni: A case

study of the role of grammar in phonology,” in Anthony Bruce, Robert A. Fox, and Michael L.
LaGaly (eds.), Papers from the Parasession on Natural Phonology. Chicago: Chicago Linguistic
Society.

Klokeid, Terry J. 1976. Topics in Lardil grammar. PhD dissertation, MIT.
Knuth, Donald E. 1992. Literate Programming. California: Stanford University Center for the Study of

Language and Information.
Larson, Richard K., David S. Warren and Juliana Freiré de Lima e Silva, D. O. Patricia Gomez, and

Konstantinos Sagonas. 1998. Semantica. Cambridge, MA: MIT Press.
Papert, Seymour. 1990. Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.
Piwowarczyk, Dariusz. 2022. Computational Approaches to Linguistic Chronology and Subgrouping. In

Thomas Olander (ed.), The Indo-European Language Family: A Phylogenetic Perspective, pp.33-50.
Cambridge: CUP.

Reiss, Charles. 2022. Priority Union and Feature Logic in Phonology. Linguistic Inquiry 53(1):199-209.
Ruthven, Kenneth. 1996. Calculators in the mathematics curriculum: the scope of personal computing

technology. In: Alan J. Bishop, Ken Clements, Christine Keitel, Jeremy Kilpatrick, Colette
Laborde (eds.) International Handbook of Mathematics Education, Part 1, pp.435-468. Dordrecht:
Kluwer.

Steel, George and Peter Jurgec. 2017. Derive!: An online tool for rule derivation in phonology [Computer
program]. Accessed 8/2/24 from https://phonology.us/. Toronto: University of Toronto.

Summer Institute of Linguistics. n.d. Phonology Assistant [Computer program]. Accessed 10/25/22 from
https://software.sil.org/phonologyassistant/

van Vugt, Floris. 2012. Pheatures Spreadsheet [Computer software]. Accessed 10/25/22 from
http://www.linguistics.ucla.edu/people/hayes/120A/Pheatures/

Wing, Jeanette M. 2006. Computational thinking. Communications of the ACM 49(3): 33-35.
Zuraw, Kie. 2004. FeaturePad [Computer software]. Accessed 10/25/22 from

https://linguistics.ucla.edu/people/hayes/120a/FeaturePad.htm

32

https://phonology.us/
https://software.sil.org/phonologyassistant/
http://www.linguistics.ucla.edu/people/hayes/120A/Pheatures/
https://linguistics.ucla.edu/people/hayes/120a/FeaturePad.htm

	Phonology as coding: an online tool for teaching and developing analyses
	1. Introduction​
	2. ​Creating a derivation in the Phonomaton
	2.1​Segments, features and inventories
	2.1.2​Custom segments

	2.2 Phonological rules
	2.2.1 The target and change
	2.2.2 Underspecification and feature-filling rules
	2.2.3​Alpha notation and abbreviations
	2.2.4​Morphological boundaries
	2.2.5​Segment indexing
	2.2.6​Regular expression syntax
	2.2.7 ​Types of rule application and a brief look at syllabification

	2.3 Morphological rules

	3.0​The Phonomaton as a teaching tool
	3.1​Pedagogically oriented features
	3.2​Implementation

	4.0 Conclusion
	References

